
AD-A242 211 DTIC

N 01j 199~

Adaptive Control of S pace Robot System with
an Attitude ontrolled Base

Yangsheng Xu, Heung-Yeung Shum,
Ju-Jang Lee, and Takeo Kanade

CMU-RI-TR-91-14

The Robotics Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

August 1991

imstriLution Un~aited

@1991 Carnegie Mellon University

91-14687 91 1 3 7



Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Puohc reportig ouren for tms -olection of information % esinmate3 !-- a.eaqe I our Der -esocise. ,nc -iv n the tre Tor rev-ewnq ,nstructrS. searcrnq ex st.r; a ources
gathering and maintaining the data needed. and corplet ng and reviewing .ine coliectirion of normatton SenO comments regaroing thi Ourcen estrmate or an, o,,e, ,pec oI th,,
colection of nrformtiOn, rncluadng suggestions tor reducing this ouroen -o Wash,rqton neacouarters Services. Direciorate forntorm' a!tOn ODerations ano . ec rs 12' etefrson
Davis Hghwav. Suite 1204. Arfington. VA 22202-4302, and to the Office t managemrent and Buoqe! POerwomK Reduc'ton Proect ( 07C4-0188). Wasrmqt "r. 'C 2,5C3

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
August 1991 technical

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Adaptive Control of Space Robot System with an Attitude Controlled
Base

6. AUTHOR(S)

Yangsheng Xu, Heung-Yeung Shum, Ju-Jang Lee, and Takeo Kanade

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

The Robotics Institute
Carnegie Mellon University CMU-RI-TR-91-14
Pittsburgh, PA 15213

9. SPONSORING, MONITORING AGENCY NAME(S) AND ADDRESSIES) 10. SPONSORING MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT 12b. OISTRIBUT;ON CODE

Approved for public release;
Distribution unlimited

13. ABSTRACT Vaxirmm2COworos)

In this report we discuss adaptive control of a space robot system with an attitude controlled base on which the robot is
attached. We at first derive the system kinematic and dynamic equations based on Lagrangian dynamics and linear
momentum conservation law. Using the dynamic model developed, we discuss the problem of linear parameterization in
terms of dynamic parameters, and have found that in joint space the dynamics can be linearized by a set of combined
dynamic parameters, but in inertia space linear parameterization is impossible in general. Then we propose an adaptive
control scheme in joint space which has been shown effective and feasible for the cases where unknown or unmodeled
dynamics must be considered, such as in the tasks of transport an unknown payload, or catching a moving object. The
scheme avoids the use of joint acceleration measurement, inversion of inertial matrix, high gain feedback, and
considerable computation cost, and at meantime, is also applicable for the fixed-base robot system by slight
modification. Since most tasks are specified in inertia space, instead of joint space, we discuss the issues associated to
adaptive control in inertia space and identify two potential problems, unavailability of joint trajectory since mapping
from inertia space trajectory is dynamic dependent and subject to uncertainty, and nonlinear parameterization in inertia
space. We approach the problem by making use of the proposed joint space adaptive controller and updating joint
trajectory by the estimated dynamic parameters and given trajectory in inertia space. In the case study of a planar system,
the linear parameterization problem is investigated, the design procedure of the controller is illustrated, and the validity
and effectiveness of the proposed control scheme is demonstrated.

14. SUBJECT TERMS 15. NUMBER OF RAGES

24 ppf 16 PRICE CODE

17. SECURITY CLASS;FICATION 18 SECURITY CLASSIFICATION 119. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRAC"

OF REPORT unlimitedOF THIS Pqfnliited OF ABST~ 'ited unlimited

- THI 
.OF . 23

' ¢,f-i 7":' ' .;'-" 'L 
" : : : "

" ' ,*' " ' 3 :- -



Contents

1 Introduction 1

2 Kinematics of Space Robot System with An Attitude Controlled

Base 2

3 Dynamics of Space Robot System with An Attitude Controlled

Base 5

4 Adaptive Control Scheme 8

5 Adaptive Control in Inertia Space 12

6 Simulation Study 13

7 Conclusions 17

References 24

NTT, G) AAI

3 t r Va L oi'._
ly .. . ..

,Av e m...ki Or

D I:! t



List of Figures

1 Space robot system with an attitude controlled base ............ 2

2 Block diagram of adaptive controller in joint space ............. 11

3 Block diagram of adaptive control scheme in inertia space ...... .13

4 Planar space robot system model ......................... 14

5 Tracking errors and parameter estimations using joint space adap-

tive control ....................................... 18

6 Comparison between adaptive control and dynamic control ...... .19

7 Example of adaptive control for fixed-based robot ........... .. 20

8 Illustration of combined dynamic parameter identification ...... .21

9 Comparison between PD type and PID type adaptive control schemes. 22

10 Trajectories in joint space and in inertia space using inertia space

adaptive controller .................................. 23

11 Tracking errors in joint space and in inertia space using inertia

space adaptive controller. .... ......................... 23



ABSTRACT

In this report, we discuss adaptive control of a space robot system with an

attitude controlled base on which the robot is attached. We at first derive the

system kinematic and dynamic equations based on Lagrangian dynamics and linear

momentum conservation law. Using the dynamic model developed, we discuss the

problem of linear parameterization in terms of dynamic parameters, and have found

that in joint space the dynamics can be linearized by a set of combined dynamic

parameters, but in inertia space linear parameterization is impossible in general.

Then we propose an adaptive control scheme in joint space which has been shown

effective and feasible for the cases where unknown or unmodeled dynamics must

be considered, such as in the tasks of transport an unknown payload, or catching

a moving object. The scheme avoids the use of joint acceleration measurement,

inversion of inertial matrix, high gain feedback, and considerable computation

cost, and at meantime, is also applicable for the fixed-base robot system by slight

modification. Since most tasks are specified in inertia space, instead of joint space,

we discuss the issues associated to adaptive control in inertia space and identify two

potential problems, unavailability of joint trajectory since mapping from inertia

space trajectory is dynamic dependent and subject to uncertainty, and nonlinear

parameterization in inertia space. We approach the problem by making use of

the proposed joint space adaptive controller and updating joint trajectory by the

estimated dynamic parameters and given trajectory in inertia space. In the case

study of a planar system, the linear parameterization problem is investigat,,, the

design procedure of the controller is illustrated, and the validity and effectiveness

of the proposed control scheme is demonstrated.
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1 Introduction

Considerable research efforts have been directed to some primary functions of robots in space appli-
cations, such as material transport [17], simple manipulation [4], basic locomotion (14], inspection
and maintenance of the space station and satellites [1, 4]. The adaptive control is critical for the
robot system subject to dynamic uncertainty in these tasks.

For material transport and manipulation tasks, space robots have to face uncertainty on the
parameters describing the dynamic properties of the grasped load, such as moments of inertia or
exact position of the mass center. In most cases, these parameters are unknown and thus they
can not be specified off-line, in inverse dynamics for feedforward compensation or any model-
based control scheme. In catching a moving object [15], the robot is expected to be capable of
adaptation to the dynamics change at the moment of catching operation. On the other hand, most
space robots are designed to be light-weighted and thus low-powered, partially due to the fact
zero gravity environment. Therefore, joint friction and damping in space robots are much more
significant than those in industrial robots. These effects are neither negligible nor easy to model.
Adaptive control may provide a feasible solution to those system dynamics uncertainties. Adaptive
control is also able to accommodate various unmodeled disturbances, such as base disturbance,
microgravity effect, sensor and actuator noise due to extremes of temperature and glare, or impact
effect during docking or rendezvous process.

Most of existing adaptive control algorithms have the following shortcomings which cause their
applications in space robots unrealistic, the use of joint acceleration measurement, the need of
inversion of inertia matrix, high gain feedback and considerable computational cost. The first
two must be avoided even for fixed-base industrial robots, because of lack of joint acceleration
sensor and the complexity of inversion of inertia matrix. Slotine and Li [11] have tackled these
problems successfully. A high gain feedback is extremely harmful for a space robot which is usually
light-weighted and low-powered. Considerable computation also needs to be avoided for allowable
package of self-contained space robots.

This report focuses on the robot system where the base attitude is controlled by either thrust
jets, or reaction wheels. The reaction wheels are arranged in orthogonal directions, and the number
of reaction wheels can be three or two depending on different tasks, and a standard reaction wheel
configuration can be found in [6]. When the attitude of the base is controlled, the orientation and
position of both robot and base are no longer free, and the dynamic interaction between the base
and robot results in the dynamic dependent kinematics, i.e., the kinematics is in relation to the
mass property of the base and robot. Control is not only applied to robot joint angles, but also
three orientations of the base.

In this report, based on linear momentum conservation law and Lagrangian dynamics, we at
first formulate kinematics and dynamics equations of the space robot system with an attitude
controlled base, in a systematic way. Based on the dynamic model developed, we study the linear
parameterization problem, i.e., dynamics can be linearly expressed in terms of dynamic parameters,
such as mass and inertia. We have found that for the space robot system with an attitude control
base, the linear parameterization is valid in joint space, while is not valid in inertia space which
can be viewed as Cartesian space for earth-based robots.

Using the dynamic model, we propose an adaptive control scheme in joint space. The scheme
does not need to measure accelerations in joint space, and a high feedback gain is not required. The
proposed method is effective and feasible for space robot applications when dynamic parameters
are unknown or unmodeled dynamics effect must be considered. Since in most applications, the
tasks are specified in inertia space normally, instead of joint space, we discuss the issues in relation
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Figure 1: Space robot system with an attitude controlled base.

to implementation of adaptive control in inertia space and identify two main problems. The first
problem occurs when the joint adaptive control is executed. The required joint trajectory cannot
be generated by the given trajectory in inertia space due to the parameter uncertainty in the kine-

matic mapping which is dynamics dependent. The second problem is nonlinear parameterization
in inertia space which make impossible to implement the same structured adaptive control as that
in joint space. We approach this problem by making use of joint space adaptive controller and up-
dating joint trajectory from identified kinematic mapping and the given trajectory in inertia space.

This method has shown its effectiveness in simulation, and rome issues associated to parameter
estimation and updating time are discussed.

Finally, we study a planar robot system to investigate linear parameterization problem of robot
system dynamics, and illustrate the validity and effectiveness of the proposed adaptive control

schemes.

2 Kinematics of Space Robot System with An Attitude Con-
trolled Base

In this section we discuss the kinematics of the space robot system when the orientation of the

base is controlled and the translation of the base is free. The relationship between the robot hand
motion in inertia space and robot joint motion is derived using linear momentum conservation law.

As shown in Figure 1, a space robot system with an attitude controlled base can be modeled
as a multibody chain composed of n + 1 rigid bodies connected by n joints, which are numbered
from 1 to n. Each body is numbered from 0 to n, and the base is denoted by B in particular.
The mass and inertia of ith body are denoted by mi and Ii, respectively. A joint variable vector
q = (ql,q2," " ,q,)T is used to represent those joint displacements. The orientation of the base is
represented by a vector qB = (qBI,qB2 ,qB 3 )T.

Two coordinate frames are defined, the inertia coordinate El on the orbit, and the base co-
ordinate EB attached on the base body with its origin at the centroid of the base. As shown in
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Figure 1, let 1t and ri be the position vectors pointing the centroid of ith body with reference to
Fj and "B respectively, then

R=ri+RB (1)

where RB is the position vector pointing the centroid of the base with reference to Et. Let Vi
and f5i be linear and angular velocities of ith body with respect to 'I, vi and wi with respect to

B. Then we have

Vi = vi+VB+f 2Bxri

51, = Li+ SB (2)

where VB and 5 1B are linear and angular velocities of the centroid of the base with respect to EI,
and operator 'x' represents outer product of R 3 vector. The velocities vi and wi in base coordinates
can be represented by

vi = JLi(q)il (3)

Wi = JAi(q)4 (4)

where JLi(q) and JAi(q) are the submatrices of Jacobian of the ith body representing linear part
and angular part respectively. The centroid of the total system can be determined by

n

MC = E m, (5)
i=O

n

IC = 1: Ii (6)
i=O

rc= E miri/mc (7)
i=O

n

c= MiJLi/mc (8)

The linear momentum can be determined by

P iHv Hvn] VB +Hvqci

= HvVB + Hvnn5B + Hvql (9)

where
Hv = mCU 3  (10)

Hvn = -me[rex] (11)

Hvq = mCJC (12)

3



and U 3 is a 3 x 3 unity matrix. The matrix function [rx for a vector r = [r., ry, rz]T is defined as

0 -r. r.

[rx] - r 0 -r.. (13)
-rY r. 0

Because there is no external force applied to the system, the linear momentum is conserved.
However, the angular momentum is not conserved for attitude control torques are applied. The
linear momentum is zero, assuming stationary initial condition.

P = 0 (14)

Therefore, we may represent the base linear velocities by base angular velocities and robot joint
velocities, i.e.,

VB =-1/rnc[Hvn,Hvq][ Y], (15)

Now we derive the relationship between the motion rate in inertia space and that in joint space.
For position control tasks, we are interested in controlling three orientations of the base, and six
generalized displacements of the robot end-effector simultaneously. Control actions are instead
applied at n robot joints and three base attitudes. We therefore define V and 6 as generalized
velocities in inertia space and joint space,

V = [fOB,VEI T  (16)

= [11B, 4] T  (17)

where Vg is the velocity of the robot end-effector in inertia space.

VE = VE + VB + 9B x rE (18)

Since the velocity of the end-effector in the base coordinates is determined by

VE = (19)

where JE is the manipulator Jacobian with respect to the base coordinates,

VE= JE4 - I/m[Hvn,HvqI [£B ] [ IB

Hv - [rEX],JE - HVqI [ B

[[r,- rE)x],JE - J[ ZB ](20)
Therefore, the motion rate relationship between joint space and inertia space can be obtained by
introducing a special Jacobian matrix N which differs from the Jacobian in fixed-base robot or the
generalized Jacobian in a completely free-flying space robot system.

N(21)
VE 4



U 3 0 3 1 (22)

N Jrr JrE

where
J,., = [(r, - rE)X] (23)

JrE = JE - J. (24)

and 03 is a 3 x 3 zero matrix.

3 Dynamics of Space Robot System with An Attitude Con-
trolled Base

In this section we discuss dynamics of the space robot system with an attitude controlled base.
After formulating total kinetic energy of the system we derive the dynamics equation of the system.
Then we investigate the property of linear parameterization of the system dynamics which is critical
for developing the adaptive control algorithms in the following section.

The total system kinetic energy is represented by

T =I /2VBTHvVB + VBT[HvoHVq] [ B ]

+1/2[nlB,4][ HO H0q ][fB]H31[ qT  Hq ql

1/(2m.)[fB,4][ Hvn ]Hv[Hvn,Hvq] [ B]

-1/mflq 'i- [Hv ][Hq/m Hq ]

[Ho - Hv T Hvn/rn, H~q - H VOT Hyq/rn

S1/2[flB,] I HOq - HvoT Hvq/mr Hq - Hvq [EB ]
1/2B4M(,) ]

= 1/20T M(O)i (25)

where M is the inertia matrix of the system, Hq is the robot inertia matrix in base coordinate, i.e.,
fixed base inertia matrix, and

0 = [qB, qT (26)

n

HO = I + 1 D(ri)mi (27)
=1
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n

Hnq = '(ILJAi + mi[ri]JLi) (28)
i=1

M(O)- [M 1 1 M 1 2  (29)

M21 M22 J/

M1 = Ha - HVnHvo/mc (30)

M12 = HOq - H THvq/mc (31)

M 21 =M (32)

M22 = Hq - H Hv/m, (33)

The property of linear parameterization to dynamic parameters is one of prerequisite condi-
tions under which most adaptive and nonlinear dynamic control schemes are developed. It has been
shown that the problem of parameterization linearity in dynamics can be reduced to the problem
of parameterization linearity in inertia matrix. Therefore, in order to study whether linear param-
eterization is valid for the space robot system with an attitude controlled base, we need to show
whether the inertia matrix M can be linearly represented by a set of properly chosen combinations
of dynamic parameters.

Based on the previous derivation, each member of matrix M can be further expanded in the
following forms.

n 1 911 112 113

Ml= L + D(ri)mi - S 2 S3 (34)
i---1 nc831 832 S33

where s, = sij and is determined by

811 = ( ir,,) 2 + (E mir 2)2  (35)
i=1 i=1

n n

s22 = (E miri.) 2 + (E mi ri.)2  (36)
i=1 i=1

n n1

s33 = (E Z-r, r,) 2 + (- miru, )2  (37)
i=1 i=1

nn
12 = -(E mri,.) (E mri,) (38)

i=1 i=1

n n1

323 = -(E miri) ( miriz) (39)
i=1 i=1

813 = -( m,rr). (22 miriz) (40)
i=1 j=1

and

6



r,2 + r2 -r r r 2

D(r) =[rx]T[rx] -rr 11  r. -rfV (41)
-rzr -r r, r 2 + r J

Thus,

M = + Z D(ri)m, - E E Rijmimj/mc (42)

i=1 i=1 j=1

1r71

= Hn- mJL,)T(ZmiJLi)

1 i=1

Hq + E E Q,,mjm 1 m' (43)
i=1 j=l

M12 = E IiJAi + j [r,]JLm, + , 1: Sijmimj/m: (44)

i=1 i=1 i=1 j=1

where the matrices [ri]JLi, JAi, Ri, Qi, ,i are only functions of geometric parameters, i.e., indepen-

dent of dynamic parameters. The above formulations imply that the inertia matrix can be linearly

represented by a set of combination of dynamic parameters, ink, Ik, rimi/mc, i,j, k = 0, 1,... , n.

From the kinetic energy formulation, we can derive dynamics equation by Lagrangian dynamics.

Mj + B(,e)e= r" (45)

where
(46)

The corresponding dynamic equation in inertia space is

Hi + C(x,i)i = F (47)

where
H = N-TMN - ' (48)

C = N-TBN - 1 - HfiN- 1  (49)

N is a generalized Jacobian matrix and is dynamics depenedent for the space robot system. The

inertia space dynamic equation can be linearly expressed in terms of dynamic parameters if and

only if the inertia matrix H can be linearly parameterized since

C(x,iC) = fHi - (IkTH ) (50)
x 2

We suppose N- 1 exists, and
N-1 = N" (51)

det(N)

where N* and det(N) are the adjoint and determinant of the matrix N, then

N.TMN*
H = (52)

[det(N)]2

7



In the above equation, the generalized Jacobian matrix [det(N)]2 appears as the denominator.
From derivation procedure of the N in the last section, it is clear that the N is time-varying and
highly coupled by dynamic parameters, i.e., mass/inertia. For such a complicated nonlinear, time-
varying function combining with dynamic parameters and time-varying joint angles, it is impossible

that every element of N*TMN* has the common factor [det(N)]2 at every instant.
Even if the above statement is true, there is still possibility to linearly parameterize H, provided

that the numerator can be linearly parameterized and the denominator can be expressed as a
product of two scalar functions with only one containing dynamic parameters, i.e.,

det(N) = fi(m,, Ii)f 2 (O,) (53)

where fi is a function of dynamic parameters which are unknown but constant, f2 is a function
independent of any dynamic parameters. This, unfortunately, is impossible in general due to high
coupling between dynamic parameters and joint variables. For example, two DOF generalized
Jacobian may contain the following simple terms

det(N) = misin(01) + m 2 cos(0 2) (54)

Even for such a simple form, det(N) cannot be decomposed as a product of two functions with one
containing r 1 and m 2 only, and nor can [det(N)]2 .

This may raise a question why for a fixed-base robot the similar structured adaptive control
can be implemented in Cartesian space. This is because that the Jacobian in the fixed-base robots
is only kinematic dependent, i.e., a function of geometric parameters and joint angles. Since the
dynamic interaction between the base and the robot, the generalized Jacobian for a space robot with
an attitude control base is dynamics dependent, i.e., not only a function of geometric parameters
and joint angles, but also a function of the dynamic parameters. It is to these parameters that
we aim at adapting in our problem. Therefore, the inertia matrix for the fixed-base robot can be

linearly parameterized for dynamic parameters in Cartesian space, while for a space robot it is
impossible in inertia space.

Generally speaking, for a space robot with attitude controlled base, dynamics can be linearly
parameterized in terms of dynamic parameters in joint space, but it cannot in inertia space.

4 Adaptive Control Scheme

In this section, based on the dynamic model developed and the property of parameterization
linearity in Section 3, we discuss the adaptive control strategy for space robot system with an
attitude controlled base.

At early state, adaptive control approaches for conventional fixed-base robot manipulators
are based on unrealistic assumptions or approximations on local linearization, time-invariant and
decoupled dynamics [3, 5]. These assumptions or approximations are relaxed after some results
developed in the context of parameter estimation [8]. Based on the possibility of selecting a

proper set of equivalent parameters such that the manipulator dynamics depends linearly on these
parameters, research on adaptive robot control can now take full consideration of the nonlinear,
time-varying and coupled robot dynamics. As stated in [7], all three kinds of adaptive controllers
in use, direct [2, 11], indirect [10], composite adaptive controllers [12], rely on the possibility of
linear parameterization of manipulator dynamics.

From previous discussion, we have learned that the dynamics of the space robot system in joint
space is linear in terms of a set of combinations of dynamic parameters. Therefore, this set of new

8



combined parameters can be used in the design of our adaptive controller. This leads us to propose
an adaptive control algorithm in joint space. Since a unique solution may be found from inverse
kinematics of the robot system with the attitude controlled base, adaptive control algorithm in joint
space is feasible. However, this is not true for a complete free-flying space robot system.

Let's recall the dynamic equation in joint space

M8 + B(0, 0)8= r (55)

We define a composite error s
s = 6p + 'ep (56)

ep = Od - 0 (57)
6P = ed - 0 (58)

and we also define modified joint velocity

0' = O + s (59)

and modified joint acceleration,

0" do
= dt +  (60)

i.e., 0" = + i + s =(9d - iip) + (iip + (i--) + (6p + (ep)

= 4d + (+ 1)4p + Cep = 4d + s + (6p (61)

If we apply the following control law in joint space,

= MO" + f3o' (62)

then

M4 + B(0, 0)0 = M^ 0" + B0' (63)
i.e.,

M0 = -B(9,8)0 + MO" + b8' (64)

Defining M =M - M, B = - B, we have

Mip = MOd - MO

=M[0", - s - op] - [-W0 + MOI" + B0O']

- M[O" - s - (6p] - [-B(O' - s) + MO" + f38']

= -P10" - B3O' - (M + B)s - Miep

= -Y(O,O, Od,d, d)i - (M + B)s - M(6p

where
Yi = lIO" + f3O' (65)

a= - a (66)

9



and a is estimation of the unknown dynamic parameters of the space robot system including the
robot, the base, and probably the payload which is being manipulated.

We now design our adaptive control algorithm using Lyapunov function candidate

V = 1/2sTMs + 1/2i Tri (67)

where the matrix r is diagonal and positive definite. This yields

V = 1/2sTrIs + sTMj + iTra

= 1/2sTr1s + STM(ep + (,p) + a

- -sTy - sT(M + B)s + 1/2sT1s + iTra
-sTMs + +T( - s + i - yTs)

If we use adaptation law
a = r-yTs (68)

then

" = TMs < 0 (69)

due to the fact that the matrix M - 2B is skew-symmetric, and M is positive definite. Therefore,
the system is stable in the sense of Lyapunov, because V is a positive, nonincreasing function
bounded below by zero. s(t) and i(t) are then bounded, and s(t) is a so-called square integrable
or L 2 function [13]. Provided that the function Y is bounded, this is sufficient for the purpose of
control because s(t) converge to zero as the L 2 function must converge to zero as t --+ c¢. The
parameter estimation error i(t) will converge to zero only if persistent excited input is utilized.

The output error
s = 6p + Cep (70)

converges to zero, which in turn implies that ep --_ 0 as t - oo since C is positive. We can now
readily conclude our adaptive control algorithm in Theorem 1.

Theorem 1 For the dynamic system (55), the adaptive control law defined by (62) and (68) is
globally stable and guarantees zero steady state error in joint space.

The composite error s is of PD type structure which is the same as the composite error defined by
Slotine and Li [11]. In general the PD structure control adds damping to the system but the steady-
state response is not affected. The PI structure adds damping and improve the steady-state error at
the same time, but rising time and settling time are penalized. To improve the system steady-state
error, in the proposed adaptive control algorithm, the PID type s can also be used. Since when
the PID type s is used, the order and type of the system is increased by one, the steady-state error
is decreased, and thus the system is more robust to parameters uncertainties which usually cause
a significant steady-state error. Moreover, the PID type s allows two parameters, instead of one,

to be adjustable in order to achieve a desired system performance. In what follows, we discuss the
stability of the control scheme when the PID type s is employed.

Define

s = ep+ lep + 2  epdr (71)

10



S=ep MO + BO space robot 0,6
6 d 0- = 0O- + s =yaJ system

= t

Figure 2: Block diagram of adaptive controller in joint space.

and the gains (I and (2 can be selected such that the eigenvalues of the tracking error equation

ep + (ILp + (2ep = 0 (72)

have negative real parts. This ensures the global stability of the system when s converges to zero.
Using the PID type s and the same definitions of 0' and 0", we can derive that

MiiP = MOd - MO

= [0" s - (Ilep - ('2e] - [-B0 + T1q" + 130']

- -Y(O, dd,Gd)&i - (M + B)s - MCI46p - M(2ep

where
Yi= 18" + fBo' (73)

i= i-a (74)

When the same type of Lyapunov function is used

V = 1/2sTMs + 1/2jTFi (75)

then,
= 1/2sT 4s + sTMi + &Tra

= 1/2sTMS + STM(ep + (16P + (2 ep) + aTra

-STMS + 1/2sT(M/ - 2B)s + iT(fa - yTs)

If adaptation law
a = F-1yTs 

(76)

is used, then
_V = -s<Ms 0 (77)

for all s due to the fact that the matrix M - 2B is skew-symmetric, and (1, (2 > 0, and M is
positive definite.

A block diagram of the proposed control algorithm with PD type s is shown in Figure 2. Our
adaptive controller is conceptually simple and easy to implement. This approach does not require
the use of joint accelerations and inversion of inertia matrix. Its computational cost is low because

11



it can be implemented through the use of Newton-Euler recursive formulation. It can be seen from
Equation (62) which has the same structure as computed torque method, that the control law can
be computed efficiently using a Newton-Euler formulation once i have been specified. A high gain
feedback is not a must for the system stability. This adaptive approach can also be applied to
industrial robot control by a slight modification.

5 Adaptive Control in Inertia Space

In this section, we extend our joint space adaptive control approaches to the problems where control
variables are specified in inertia space.

Conceptually, for most applications, the desired robot hand trajectory (i.e., position, velocity
and acceleration) must be specified in inertia space. For example, let's consider catching a moving
object by a space robot. The desired trajectory after catching depends upon the tasks and the
motion trajectory of the object before catching, and thus must be specified in inertia space. In
other words, as in the case of fixed-base robot tasks are normally specified in Cartesian space, tasks
in space applications are unlikely to be specified in joint space. Fortunately, the mapping from
robot hand position in inertia space to displacements in joint space can be uniquely determined for
space robot system with an attitude controlled base, which differs from the case of a completely
free-flying space robot system. This unique kinetic relationship has been first studied by Longman
et al. [9], and also is illustrated by a planar example in our case study.

However, the unique kinematics relationship can only be determined when dynamic parameters
are given, for this relationship is indeed dynamic dependent. When some dynamic parameters are
unknown, which is indeed the reason why we come to adaptive control, the mapping cannot be
determined! Therefore, the primary difficulty of extending our approach from joint space to inertia
space is that the desired trajectory in inertia space cannot be transformed to the desired trajectory
in joint space because some dynamic parameters are unknown. In previous discussion, we have
utilized a desired trajectory in joint space, as other researchers have done [16], without giving any
explanation about how the trajectory is generated. The problem is not significant if the objective
is to identify dynamic parameters, but is important if the objective is to control the system.

The problem can be resolved if the same structured adaptive control scheme can be implemented
in inertia space. This, however, is not feasible because the proposed adaptive control scheme in
joint space requires that the dynamic model must be linearly parameterized. Therefore, the same
type of the control scheme cannot be developed in inertia space. As has been known, the dynamic
related generalized Jacobian of space robot makes it impossible to suitably choose a set of dynamic
parameters such that the inertia space system dynamics can be linearized. That is why the same
structured adaptive controller in joint space is not feasible for adaptive control in inertia space.

We approach the problem in the following way. First, given trajectory in inertia space, we use
an initial estimation of dynamic parameters to compute initial joint trajectory. Then the initial
joint trajectory and dynamic parameters are used in the proposed joint space adaptive control
algorithms. After a certain period of time we update the system dynamic parameters by using
new estimated ones in the outer loop of our controller. We can then specify more precise joint
space trajectory based on these new parameters and the inertia space trajectory. Since the inertia
space trajectory is uniquely determined by the joint space trajectory and dynamic parameters, it
can be shown from the Jacobian relationship that position errors in inertia space converges to a
given boundary if position errors in joint space and parameter errors are bounded, provided that
the robot is not in its singularity configuration. The control scheme is illustrated in Figure 3.

It is worthwhile to discuss two issues in the implementation of the proposed control scheme.
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Figure 3: Block diagram of adaptive control scheme in inertia space.

First, to accurately estimate unknown parameters, a persistent excitation (PE) trajectory is re-
quired to drive the robot joints. PE trajectories in joint space and in inertia space are not equivalent
because the spectrum of trajectory signal in inertia space is different from the spectrum of the same
signal in joint space due to nonlinear kinematic transformation. Therefore, it is of importance to
carefully choose initial trajectory in inertia space such that the same trajectory in joint space is
PE. If the PE condition is not satisfied, parameter identification error occurs, although the joint
space position errors may still converge.

Second, the updating time for inverse kinematics using the estimated parameters in outer loop
of our controller must be slow enough to maintain the system stable. The outer loop, as shown in
Figure 3, is used to update the inverse kinematics and therefore the desired joint trajectory which
is used in joint space adaptive controller. A fast updation, especially using incorrect parameters
Jii, may not guarantee the convergence of parameter errors. In the simulation, the updating time
for inverse kinematics is set to 10 seconds. Simulation results have shown that position errors in
inertia space converge to zero as errors in joint space converge to zero and estimated parameters
converge to their true values.

In fact, if the updating time for inverse kinematics is long enough, we can also view the control
scheme as a two-phase approach, parameter identification phase and control phase. That is, to
estimate dynamic parameters in joint space using the joint space trajectory transformed by the
given inertia space trajectory and initial guess of parameters, then to control the system in inertia
space, once the dynamic parameters has been correctly identified. If the dynamic parameters are
estimated ideally, the control phase may also be executed using dynamic control algorithm.

6 Simulation Study

In previous discussion, we studied kinematics and dynamics, and presented an adaptive algorithm
in joint space for a general multiple-degrees-of-freedom space robot system with an attitude con-
trolled base. In this section, we conduct a case study to show the computation of the proposed
algorithms and their feasibility in robot motion control. Though the following discussion is con-
fined to adaptation to mass variation only, our algorithm is also applicable to other parameter
adaptation, provided that a set of combinations of those parameters can be chosed such that the
dynamics can be linearly expressed in terms of the parameters interested.

A two-DOF revolute manipulator with link length given by 11 and 12 (11=12=1) is considered
as a lumped-parameter model with point mass m, and M 2 at the end of each link. For simplicity,
we assume that the base attitude can be successfully controlled so that we need only consider the

13



Base

Y

Figure 4: A planar space robot system model.

control of the robot itself. However, it must be pointed out that our adaptive control algorithm
can be applied to control the robot motion and the base orientation simultaneously, albeit more
complicated. The system model for simulation study is shown in Figure 4.

At initialization, m, and R, are computed, and they remain unchanged unless a load is added.

Mc = m0 + Mn + m2  (78)

MRc = moRo + in1 R 1 + m 2 R 2  (79)

R 1 = Ro + ri (80)

R 2 = Ro + r 2  (81)

When the robot is in motion,

Ro = - -ri - -r2 (82)

RE = R 2  (83)

The generalized Jacobian is
N = JE -Jc (84)

and
JE = J 2  (85)

ic = anj1 + M2j' (86)

i r-( 1 + m 2 )S 1 - 2 S1 2 -M 2 3 1 2  (87)
M [ (Mi + m2)cI + m2c12  m2c 2 J

where a and c stand for sine and cosine, e.g., a = sin(qj), c12 = cos(qi +q2). The system dynamics
has the following form,

M4 + B(q, D4 = r (88)

14



where
M = Mq -M2 (89)

Mq =12 rm + 2M 2 ( l + c 2 ) m 2 (0 +c 2 ) (90)

M2(0 + C2 ) m72

M = mcJ c J, (91)

12 r m + 2M 2(MI + M2)(l + c2) M(1 + c2) + mM 2c 2 1
M= [ m2(l + c2 ) + 7,n1m 2c 2  m2

therefore,

12 m M 1 + mm 2 + 2mom 2(1 + c2) M1M2 + MoM 2(1 + c2 ) 1
M nmm 2 + Mom 2(1 + c2) MrnM2 + m2Mo

=p i R, +P 2 R2 + p 3R 3  (94)

where _no'nt

P1 = (95)
mn1 mn2

P2 =  - (96)

MOm2 (97)

12=[ 1]2  2 12 [2(1+ C2 )12  (1+ C2 )1(981, 0 R2 = 12 12 ]R3 = )1 2(98)

0 0 (1+c)1 2

It is noted that M is linear in terms of combined dynamic parameters Pi, P2 and p3. This is an
example to show that dynamics of the space robot system with an attitude controlled base can be
linearly parameterized in joint space. We also note that m0 , n, and m 2 can be uniquely determined
by piP2 and p3,

MI = pIP2(- + 1+ ) (99)
P1 P2 P3

= P2P3( + - + I) (100)
P1 P2 P3

,n ,P(1 1 1
MO = PIP3(- + - + I) (101)

PI P2 P3
The matrix B is determined by

B = mr 2 r -212s242 -12s22 lR (102)
m, [ 12 s241 J J

where

R4= 12 24 0 (103)

Our adaptive control law is
T Mq ' +3q' = Yi (104)

Y = [ Rlq" R2q" RAq" + R4 q' ] (105)
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1i2 (106)

with the following adaptation law

7 1sTRI q"
a = 72 sTR 2 q" (107)

7 3 s T(R 3 q" + R 4 q')

To study the proposed adaptive algorithms, we use the following common set of conditions:

qid = --- (54 + 6(sin(t) + cos(4t))) (108)

q2d = -(- 126 + 6(sin(2t) + cos(6t))) (109)
180

C = 10 (110)

In the first case we used the following mass parameters, mo = 41kg, m, = 5kg, m2 = 4kg,
and the initial guess of all three parameters is set to 50% of their true values. It can be found
from Figure 5 that joint errors converge to zero and all parameters converge to their true values
4.1, 0.4, and 3.28 (with small relative errors 1.2%, 2.1%, 2.5%, respectively) after a transient
period (approximately 10 seconds). The results showed the validity and efficiency of the adaptive
algorithm proposed.

We then compare the performance of adaptive controller and dynamic controller without adap-
tation when there is uncertainty in dynamic parameters. In order to make the dynamic control
more favorable, we use 80% of true values as initial estimates of those dynamic parameters. The
dynamic control algorithm is based on PD type structure in joint space without consideration of
parameter uncertainty. Figure 6 gives plots of the variations of two joint position errors by using
adaptive control and dynamic control. The adaptive control performance is distinctly superior to
the dynamic control response.

To study the effect of mass ratio of the base with respect to the robot, we performed simulation
when the base mass is sufficiently large compared to that of robot. Figure 7 gives the simulation
results when the base mass is 50000kg. The results have shown that the performance is not sensitive
to the mass ratio, which also shows that the proposed control algorithm is applicable to fixed-base
robots.

Figure 8 shows identification of combined parameters Pi, p2, and P3, and the resultant mass
nl, m 2 , and ino, in the above case. From Figure 8 we found that estimation of all parameters mi,

M 2 , and mo are very close to their true values. This demonstrated that identification of combined
dynamic parameters is equivalent to the identification of dynamic parameters mi, M 2 , and m0 , as
we have discussed previously. It is interesting to note that in Figure 8 the estimation of nonlinear
dynamic parameters pi, and p3 converged to m1 and m2 due to the fact that the base mass is
almost infinite.

In order to compare two different adaptive control algorithms, PD type and PID type, various
cases have been tested. For a persistent excitation (PE) trajectory, both algorithms presented
almost identical performance. For a non-PE trajectory, such as

q1d = -(60 - t + 0.05t 2) (111)
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q2d = -(-120 - t + 0.05t2 ) (112)

180
the steady state performance is improved significantly using PID type adaptive controller, as shown
in Figure 9.

For inertia space adaptive controller, an initial guess of the updating parameters is set to
80% of the true value. The inertia space trajectory and joint space trajectory employed in the
simulation are shown in Figure 10. We used 10 seconds as updating time for inverse kinematics.
The effectiveness of this adaptive scheme has been verified by the tracking errors shown in Figure
11. It is found that position errors in inertia space converge to zero as errors in joint space converge
to zero and estimated parameters converge to their true values.

7 Conclusions

In this report, we have discussed adaptive control of a space robot system with an attitude controlled
base on which the robot is attached. Adaptive control is critical for various robotic applications in
space, such as material transport and light manipulation, in which robots have to face uncertainty
on the dynamic parameters of the load or the structure. Based on Lagrangian dynamics and linear
momentum conservation law, we derived system dynamic equations. Then we showed that the
system dynamics in joint space can be linearly parameterized, i.e., the dynamics can be linearized
in joint space by a set of combined dynamic parameters, while the same conclusion is not true in
inertia space.

An adaptive control scheme in joint space is proposed to cope with dynamic uncertainties based
on the dynamic model developed. The scheme is effective and feasible for space robot applications
by eliminating the use of joint acceleration measurement, inversion of inertial matrix, high gain
feedback, and considerable computation cost. At meantime, the scheme is also applicable for the
fixed-base robot system by slight modification.

Considering that the tasks in space are specified in inertia space in most applications, we
discussed the issues of adaptive control of the robot for the tasks that must be filfull in inertia
space. Two main problems have been identified. If the joint adaptive control is implemented, the
desired joint trajectory cannot be generated from the given inertia space trajectory since kinematic
mapping is dynamics dependent, and thus is subjected to uncertainty in parameters. Moreover, the
same structured adaptive control as in joint space is not feasible for inertia space due to nonlinear
parameterization in inertia space. We approached this problem by making use of the proposed
joint space adaptive controller while updating joint trajectory by using the estimated dynamic
parameters and the given trajectory in inertia space. This method has shown its effectiveness in
simulation. Parameter estimation and updating time are discussed.

Finally, a planar system is studied numerically to investigate the linear parameterization prob-
lem and illustrate the procedure to design the controller. The results demonstrated validity and
effectiveness of the proposed adaptive control schemes in both joint and inertia space descriptions.
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Figure 5 Tracking errors and parameter estimations using joint space adaptive Control
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